OCR S1 2007 June — Question 9

Exam BoardOCR
ModuleS1 (Statistics 1)
Year2007
SessionJune
TopicGeometric Distribution
TypeMean/expectation of geometric distribution

9
  1. A random variable \(X\) has the distribution \(\operatorname { Geo } \left( \frac { 1 } { 5 } \right)\). Find
    (a) \(\mathrm { E } ( \mathrm { X } )\),
    (b) \(\mathrm { P } ( \mathrm { X } = 4 )\),
    (c) \(P ( X > 4 )\).
  2. A random variable \(Y\) has the distribution \(\operatorname { Geo } ( p )\), and \(q = 1 - p\).
    (a) Show that \(P ( Y\) is odd \() = p + q ^ { 2 } p + q ^ { 4 } p + \ldots\).
    (b) Use the formula for the sum to infinity of a geometric progression to show that $$P ( Y \text { is odd } ) = \frac { 1 } { 1 + q }$$ \href{http://physicsandmathstutor.com}{physicsandmathstutor.com}
    7