OCR S1 2005 June — Question 6

Exam BoardOCR
ModuleS1 (Statistics 1)
Year2005
SessionJune
TopicTree Diagrams
TypeThree or more stages

6 Two bags contain coloured discs. At first, bag \(P\) contains 2 red discs and 2 green discs, and bag \(Q\) contains 3 red discs and 1 green disc. A disc is chosen at random from bag \(P\), its colour is noted and it is placed in bag \(Q\). A disc is then chosen at random from bag \(Q\), its colour is noted and it is placed in bag \(P\). A disc is then chosen at random from bag \(P\). The tree diagram shows the different combinations of three coloured discs chosen.
\includegraphics[max width=\textwidth, alt={}, center]{5faf0d93-4037-4958-8665-1008477a79de-5_863_986_559_612}
  1. Write down the values of \(a , b , c , d , e\) and \(f\). The total number of red discs chosen, out of 3, is denoted by \(R\). The table shows the probability distribution of \(R\).
    \(r\)0123
    \(\mathrm { P } ( R = r )\)\(\frac { 1 } { 10 }\)\(k\)\(\frac { 9 } { 20 }\)\(\frac { 1 } { 5 }\)
  2. Show how to obtain the value \(\mathrm { P } ( R = 2 ) = \frac { 9 } { 20 }\).
  3. Find the value of \(k\).
  4. Calculate the mean and variance of \(R\).