OCR S1 2005 January — Question 9

Exam BoardOCR
ModuleS1 (Statistics 1)
Year2005
SessionJanuary
TopicLinear regression
TypeCalculate regression line then predict

9 Five observations of bivariate data produce the following results, denoted as ( \(x _ { i } , y _ { i }\) ) for \(i = 1,2,3,4,5\). $$\begin{aligned} & ( 13,2.7 )
& { \left[ \Sigma x = 90 , \Sigma y = 15.0 , \Sigma x ^ { 2 } = 1720 , \Sigma y ^ { 2 } = 46.86 , \Sigma x y = 264.0 . \right] } \end{aligned}$$
  1. Show that the regression line of \(y\) on \(x\) has gradient - 0.06 , and find its equation in the form \(y = a + b x\).
  2. The regression line is used to estimate the value of \(y\) corresponding to \(x = 20\), but the value \(x = 20\) is accurate only to the nearest whole number. Calculate the difference between the largest and the smallest values that the estimated value of \(y\) could take. The numbers \(e _ { 1 } , e _ { 2 } , e _ { 3 } , e _ { 4 } , e _ { 5 }\) are defined by $$e _ { i } = a + b x _ { i } - y _ { i } \quad \text { for } i = 1,2,3,4,5$$
  3. The values of \(e _ { 1 } , e _ { 2 }\) and \(e _ { 3 }\) are \(0.6 , - 0.7\) and 0.2 respectively. Calculate the values of \(e _ { 4 }\) and \(e _ { 5 }\).
  4. Calculate the value of \(e _ { 1 } ^ { 2 } + e _ { 2 } ^ { 2 } + e _ { 3 } ^ { 2 } + e _ { 4 } ^ { 2 } + e _ { 5 } ^ { 2 }\) and explain the relevance of this quantity to the regression line found in part (i).
  5. Find the mean and the variance of \(e _ { 1 } , e _ { 2 } , e _ { 3 } , e _ { 4 } , e _ { 5 }\).