1 The scatter diagrams below illustrate three sets of bivariate data, \(A , B\) and \(C\).
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f0c0a4ca-da0a-4c74-b8b1-bac4fd3f2487-2_440_428_360_317}
\captionsetup{labelformat=empty}
\caption{Set \(A\)}
\end{figure}
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f0c0a4ca-da0a-4c74-b8b1-bac4fd3f2487-2_440_426_360_858}
\captionsetup{labelformat=empty}
\caption{Set \(B\)}
\end{figure}
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f0c0a4ca-da0a-4c74-b8b1-bac4fd3f2487-2_435_424_365_1402}
\captionsetup{labelformat=empty}
\caption{Set \(C\)}
\end{figure}
State, with an explanation in each case, which of the three sets of data has
- the largest,
- the smallest,
value of the product moment correlation coefficient.