- \hspace{0pt} [In this question \(\mathbf { i }\) and \(\mathbf { j }\) are horizontal unit vectors due east and due north respectively and position vectors are given relative to a fixed origin \(O\) ]
A particle \(P\) is moving with velocity \(( \mathbf { i } - 2 \mathbf { j } ) \mathrm { km } \mathrm { h } ^ { - 1 }\). At time \(t = 0\) hours, the position vector of \(P\) is \(( - 5 \mathbf { i } + 9 \mathbf { j } ) \mathrm { km }\). At time \(t\) hours, the position vector of \(P\) is \(\mathbf { p } \mathrm { km }\).
- Find an expression for \(\mathbf { p }\) in terms of \(t\).
The point \(A\) has position vector ( \(3 \mathbf { i } + 2 \mathbf { j }\) ) km.
- Find the position vector of \(P\) when \(P\) is due west of \(A\).
Another particle \(Q\) is moving with velocity \([ ( 2 b - 1 ) \mathbf { i } + ( 5 - 2 b ) \mathbf { j } ] \mathrm { km } \mathrm { h } ^ { - 1 }\) where \(b\) is a constant.
Given that the particles are moving along parallel lines,
- find the value of \(b\).