3. (a) Prove that
$$\frac { \mathrm { d } ( \operatorname { arcoth } x ) } { \mathrm { d } x } = \frac { 1 } { 1 - x ^ { 2 } }$$
Given that \(y = ( \operatorname { arcoth } x ) ^ { 2 }\),
(b) show that
$$\left( 1 - x ^ { 2 } \right) \frac { d ^ { 2 } y } { d x ^ { 2 } } - 2 x \frac { d y } { d x } = \frac { k } { 1 - x ^ { 2 } }$$
where \(k\) is a constant to be determined.