6.
$$\mathbf { M } = \left( \begin{array} { r r r }
p & - 2 & 0
- 2 & 6 & - 2
0 & - 2 & q
\end{array} \right)$$
where \(p\) and \(q\) are constants.
Given that \(\left( \begin{array} { r } 2
- 2
1 \end{array} \right)\) is an eigenvector of the matrix \(\mathbf { M }\),
- find the eigenvalue corresponding to this eigenvector,
- find the value of \(p\) and the value of \(q\).
Given that 6 is another eigenvalue of \(\mathbf { M }\),
- find a corresponding eigenvector.
Given that \(\left( \begin{array} { l } 1
2
2 \end{array} \right)\) is a third eigenvector of \(\mathbf { M }\) with eigenvalue 3 - find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that
$$\mathbf { P } ^ { \mathrm { T } } \mathbf { M } \mathbf { P } = \mathbf { D }$$