Edexcel FP3 2014 June — Question 2

Exam BoardEdexcel
ModuleFP3 (Further Pure Mathematics 3)
Year2014
SessionJune
Topic3x3 Matrices

2. $$\mathbf { M } = \left( \begin{array} { l l l } 1 & 0 & 2
0 & 4 & 1
0 & 5 & 0 \end{array} \right)$$
  1. Show that matrix \(\mathbf { M }\) is not orthogonal.
  2. Using algebra, show that 1 is an eigenvalue of \(\mathbf { M }\) and find the other two eigenvalues of \(\mathbf { M }\).
  3. Find an eigenvector of \(\mathbf { M }\) which corresponds to the eigenvalue 1 The transformation \(M : \mathbb { R } ^ { 3 } \rightarrow \mathbb { R } ^ { 3 }\) is represented by the matrix \(\mathbf { M }\).
  4. Find a cartesian equation of the image, under this transformation, of the line $$x = \frac { y } { 2 } = \frac { z } { - 1 }$$