Edexcel FP3 2013 June — Question 5

Exam BoardEdexcel
ModuleFP3 (Further Pure Mathematics 3)
Year2013
SessionJune
TopicInvariant lines and eigenvalues and vectors

  1. The matrix \(\mathbf { M }\) is given by
$$\mathbf { M } = \left( \begin{array} { r r r } 1 & 1 & a
2 & b & c
- 1 & 0 & 1 \end{array} \right) , \text { where } a , b \text { and } c \text { are constants. }$$
  1. Given that \(\mathbf { j } + \mathbf { k }\) and \(\mathbf { i } - \mathbf { k }\) are two of the eigenvectors of \(\mathbf { M }\), find
    1. the values of \(a , b\) and \(c\),
    2. the eigenvalues which correspond to the two given eigenvectors.
  2. The matrix \(\mathbf { P }\) is given by $$\mathbf { P } = \left( \begin{array} { r r r } 1 & 1 & 0
    2 & 1 & d
    - 1 & 0 & 1 \end{array} \right) \text {, where } d \text { is constant, } d \neq - 1$$ Find
    1. the determinant of \(\mathbf { P }\) in terms of \(d\),
    2. the matrix \(\mathbf { P } ^ { - 1 }\) in terms of \(d\).