2. Two skew lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations
$$\begin{aligned}
& l _ { 1 } : \mathbf { r } = ( \mathbf { i } - \mathbf { j } + \mathbf { k } ) + \lambda ( 4 \mathbf { i } + 3 \mathbf { j } + 2 \mathbf { k } )
& l _ { 2 } : \mathbf { r } = ( 3 \mathbf { i } + 7 \mathbf { j } + 2 \mathbf { k } ) + \mu ( - 4 \mathbf { i } + 6 \mathbf { j } + \mathbf { k } )
\end{aligned}$$
respectively, where \(\lambda\) and \(\mu\) are real parameters.
- Find a vector in the direction of the common perpendicular to \(l _ { 1 }\) and \(l _ { 2 }\)
- Find the shortest distance between these two lines.