- The plane \(\Pi _ { 1 }\) has vector equation
$$\mathbf { r } = \left( \begin{array} { r }
1
- 1
2
\end{array} \right) + s \left( \begin{array} { l }
1
1
0
\end{array} \right) + t \left( \begin{array} { r }
1
2
- 2
\end{array} \right) ,$$
where \(s\) and \(t\) are real parameters.
The plane \(\Pi _ { 1 }\) is transformed to the plane \(\Pi _ { 2 }\) by the transformation represented by the matrix \(\mathbf { T }\), where
$$\mathbf { T } = \left( \begin{array} { r r r }
2 & 0 & 3
0 & 2 & - 1
0 & 1 & 2
\end{array} \right)$$
Find an equation of the plane \(\Pi _ { 2 }\) in the form r.n=p