A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Hyperbolic functions
Q3
Edexcel F3 2024 June — Question 3
Exam Board
Edexcel
Module
F3 (Further Pure Mathematics 3)
Year
2024
Session
June
Topic
Hyperbolic functions
\(\quad y = \operatorname { arsinh } \left( \sqrt { x ^ { 2 } - 1 } \right) \quad x > 1\)
Prove that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { \sqrt { x ^ { 2 } - 1 } }\)
$$\mathrm { f } ( x ) = \frac { 1 } { 3 } \operatorname { arsinh } \left( \sqrt { x ^ { 2 } - 1 } \right) - \arctan x \quad x > 1$$
Determine the exact values of \(x\) for which \(\mathrm { f } ^ { \prime } ( x ) = 0\)
This paper
(9 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9