Edexcel F3 (Further Pure Mathematics 3) 2024 June

Question 1
View details
  1. The hyperbola \(H\) has
  • foci with coordinates \(\left( \pm \frac { 13 } { 2 } , 0 \right)\)
  • directrices with equations \(x = \pm \frac { 72 } { 13 }\)
  • eccentricity e
Determine
  1. the value of \(e\)
  2. an equation for \(H\), giving your answer in the form \(p x ^ { 2 } - q y ^ { 2 } = r\), where \(p , q\) and \(r\) are integers.
Question 2
View details
  1. In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.
$$\mathbf { M } = \left( \begin{array} { r r r } 2 & 0 & 3
0 & - 4 & - 3
0 & - 4 & 0 \end{array} \right)$$ Given that \(\mathbf { M }\) has exactly two distinct eigenvalues \(\lambda _ { 1 }\) and \(\lambda _ { 2 }\) where \(\lambda _ { 1 } < \lambda _ { 2 }\)
  1. determine a normalised eigenvector corresponding to the eigenvalue \(\lambda _ { 1 }\) The line \(l _ { 1 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } 4
    - 1
    0 \end{array} \right) + \mu \left( \begin{array} { r } 2
    0
    - 1 \end{array} \right)\), where \(\mu\) is a scalar parameter.
    The transformation \(T\) is represented by \(\mathbf { M }\).
    The line \(l _ { 1 }\) is transformed by \(T\) to the line \(l _ { 2 }\)
  2. Determine a vector equation for \(l _ { 2 }\), giving your answer in the form \(\mathbf { r } \times \mathbf { b } = \mathbf { c }\) where \(\mathbf { b }\) and \(\mathbf { c }\) are constant vectors.
Question 3
View details
  1. \(\quad y = \operatorname { arsinh } \left( \sqrt { x ^ { 2 } - 1 } \right) \quad x > 1\)
    1. Prove that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { \sqrt { x ^ { 2 } - 1 } }\)
    $$\mathrm { f } ( x ) = \frac { 1 } { 3 } \operatorname { arsinh } \left( \sqrt { x ^ { 2 } - 1 } \right) - \arctan x \quad x > 1$$
  2. Determine the exact values of \(x\) for which \(\mathrm { f } ^ { \prime } ( x ) = 0\)
Question 4
View details
  1. (a) Use the definitions of hyperbolic functions in terms of exponentials to show that
$$\sinh ( A + B ) \equiv \sinh A \cosh B + \cosh A \sinh B$$ (b) Hence express \(10 \sinh x + 8 \cosh x\) in the form \(R \sinh ( x + \alpha )\) where \(R > 0\), giving \(\alpha\) in the form \(\ln p\) where \(p\) is an integer.
(c) Hence solve the equation $$10 \sinh x + 8 \cosh x = 18 \sqrt { 7 }$$ giving your answer in the form \(\ln ( \sqrt { 7 } + q )\) where \(q\) is a rational number to be determined.
Question 5
View details
5. $$4 x ^ { 2 } + 4 x + 17 \equiv ( 2 x + p ) ^ { 2 } + q$$ where \(p\) and \(q\) are integers.
  1. Determine the value of \(p\) and the value of \(q\) Given that $$\frac { 8 x + 5 } { \sqrt { 4 x ^ { 2 } + 4 x + 17 } } \equiv \frac { 1 } { \sqrt { 4 x ^ { 2 } + 4 x + 17 } } + \frac { A x + B } { \sqrt { 4 x ^ { 2 } + 4 x + 17 } }$$ where \(A\) and \(B\) are integers,
  2. write down the value of \(A\) and the value of \(B\)
  3. Hence use algebraic integration to show that $$\int _ { \frac { 1 } { 3 } } ^ { 1 } \frac { 8 x + 5 } { \sqrt { 4 x ^ { 2 } + 4 x + 17 } } \mathrm {~d} x = k + \frac { 1 } { 2 } \ln k$$ where \(k\) is a rational number to be determined.
Question 6
View details
  1. The ellipse \(E\) has equation
$$\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1$$ The line \(l\) is the normal to \(E\) at the point \(P ( 5 \cos \theta , 3 \sin \theta )\) where \(0 < \theta < \frac { \pi } { 2 }\)
  1. Using calculus, show that an equation for \(l\) is $$5 x \sin \theta - 3 y \cos \theta = 16 \sin \theta \cos \theta$$ Given that
    • \(\quad l\) intersects the \(y\)-axis at the point \(Q\)
    • the midpoint of the line segment \(P Q\) is \(M\)
    • determine the exact maximum area of triangle \(O M P\) as \(\theta\) varies, where \(O\) is the origin.
    You must justify your answer.
Question 7
View details
  1. In this question you must show all stages of your working. Solutions relying on calculator technology are not acceptable.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{7e38e2ed-ab5f-4906-940e-4b02c6992164-22_568_1192_376_440} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the curve with equation $$y = \ln \left( \tanh \frac { x } { 2 } \right) \quad 1 \leqslant x \leqslant 2$$
  1. Show that the length, \(s\), of the curve is given by $$s = \int _ { 1 } ^ { 2 } \operatorname { coth } x \mathrm {~d} x$$
  2. Hence show that $$s = \ln \left( \mathrm { e } + \frac { 1 } { \mathrm { e } } \right)$$
Question 8
View details
8. $$I _ { n } = \int _ { 0 } ^ { k } x ^ { n } ( k - x ) ^ { \frac { 1 } { 2 } } \mathrm {~d} x \quad n \geqslant 0$$ where \(k\) is a positive constant.
  1. Show that $$I _ { n } = \frac { 2 k n } { 3 + 2 n } I _ { n - 1 } \quad n \geqslant 1$$ Given that $$\int _ { 0 } ^ { k } x ^ { 2 } ( k - x ) ^ { \frac { 1 } { 2 } } \mathrm {~d} x = \frac { 9 \sqrt { 3 } } { 280 }$$
  2. use the result in part (a) to determine the exact value of \(k\).
Question 9
View details
  1. The plane \(\Pi _ { 1 }\) has vector equation
$$\mathbf { r } = \left( \begin{array} { l } 5
3
0 \end{array} \right) + s \left( \begin{array} { l } 3
0
1 \end{array} \right) + t \left( \begin{array} { r } 1
- 2
2 \end{array} \right)$$ where \(s\) and \(t\) are scalar parameters.
  1. Determine a Cartesian equation for \(\Pi _ { 1 }\) The plane \(\Pi _ { 2 }\) has vector equation \(\mathbf { r } . \left( \begin{array} { r } 5
    - 2
    3 \end{array} \right) = 1\)
  2. Determine a vector equation for the line of intersection of \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\) Give your answer in the form \(\mathbf { r } = \mathbf { a } + \lambda \mathbf { b }\), where \(\mathbf { a }\) and \(\mathbf { b }\) are constant vectors and \(\lambda\) is a scalar parameter. The plane \(\Pi _ { 3 }\) has Cartesian equation \(4 x - 3 y - z = 0\)
  3. Use the answer to part (b) to determine the coordinates of the point of intersection of \(\Pi _ { 1 } , \Pi _ { 2 }\) and \(\Pi _ { 3 }\)