A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q5
CAIE P1 2019 November — Question 5
Exam Board
CAIE
Module
P1 (Pure Mathematics 1)
Year
2019
Session
November
Topic
Reciprocal Trig & Identities
5
Given that \(4 \tan x + 3 \cos x + \frac { 1 } { \cos x } = 0\), show, without using a calculator, that \(\sin x = - \frac { 2 } { 3 }\).
Hence, showing all necessary working, solve the equation $$4 \tan \left( 2 x - 20 ^ { \circ } \right) + 3 \cos \left( 2 x - 20 ^ { \circ } \right) + \frac { 1 } { \cos \left( 2 x - 20 ^ { \circ } \right) } = 0$$ for \(0 ^ { \circ } \leqslant x \leqslant 180 ^ { \circ }\).
This paper
(11 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11