Edexcel F3 2022 June — Question 9

Exam BoardEdexcel
ModuleF3 (Further Pure Mathematics 3)
Year2022
SessionJune
TopicConic sections

  1. The ellipse \(E\) has equation
$$\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 4 } = 1$$ The line \(l\) has equation \(y = k x - 3\), where \(k\) is a constant.
Given that \(E\) and \(l\) meet at 2 distinct points \(P\) and \(Q\)
  1. show that the \(x\) coordinates of \(P\) and \(Q\) are solutions of the equation $$\left( 9 k ^ { 2 } + 4 \right) x ^ { 2 } - 54 k x + 45 = 0$$ The point \(M\) is the midpoint of \(P Q\)
  2. Determine, in simplest form in terms of \(k\), the coordinates of \(M\)
  3. Hence show that, as \(k\) varies, \(M\) lies on the curve with equation $$x ^ { 2 } + p y ^ { 2 } = q y$$ where \(p\) and \(q\) are constants to be determined.