Edexcel F3 (Further Pure Mathematics 3) 2020 June

Question 1
View details
  1. (a) Use the definition of \(\sinh x\) in terms of exponentials to show that
$$\sinh 3 x \equiv 4 \sinh ^ { 3 } x + 3 \sinh x$$ (b) Hence determine the exact coordinates of the points of intersection of the curve with equation \(y = \sinh 3 x\) and the curve with equation \(y = 19 \sinh x\), giving your answers as simplified logarithms where necessary.
Question 2
View details
2. Determine
  1. \(\int \frac { 1 } { 3 x ^ { 2 } + 12 x + 24 } \mathrm {~d} x\)
  2. \(\int \frac { 1 } { \sqrt { 27 - 6 x - x ^ { 2 } } } \mathrm {~d} x\)
Question 3
View details
3. $$\mathbf { M } = \left( \begin{array} { c c c } 3 & - 4 & k
1 & - 2 & k
1 & - 5 & 5 \end{array} \right) \text { where } k \text { is a constant }$$ Given that 3 is an eigenvalue of \(\mathbf { M }\),
  1. find the value of \(k\).
  2. Hence find the other two eigenvalues of \(\mathbf { M }\).
  3. Find a normalised eigenvector corresponding to the eigenvalue 3
    .
    VIIIV SIHI NI JIIHM ION OCVARV SHAL NI ALIAM LON OOVERV SIHI NI JIIIM ION OO
Question 4
View details
4.
  1. Show that, for \(n \geqslant 2\)
  2. Hence find the functions \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\) such that $$\int x ^ { 4 } \cos x \mathrm {~d} x = \mathrm { f } ( x ) \sin x + \mathrm { g } ( x ) \cos x + c$$ where \(c\) is an arbitrary constant. $$I _ { n } = \int x ^ { n } \cos x \mathrm {~d} x$$
  3. Show that, for \(n \geqslant 2\) $$I _ { n } = x ^ { n } \sin x + n x ^ { n - 1 } \cos x - n ( n - 1 ) I _ { n - 2 }$$
  4. Hence find the functions \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\) such that
Question 5
View details
5. The hyperbola \(H\) has equation \(\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 4 } = 1\) The line \(l\) has equation \(y = m x + c\), where \(m\) and \(c\) are constants. Given that \(l\) is a tangent to \(H\),
  1. show that \(25 m ^ { 2 } = 4 + c ^ { 2 }\)
  2. Hence find the equations of the tangents to \(H\) that pass through the point ( 1,2 ).
  3. Find the coordinates of the point of contact each of these tangents makes with \(H\).
Question 6
View details
6. $$\mathbf { A } = \left( \begin{array} { r r r } 1 & - 1 & 1
1 & 1 & 1
1 & 2 & a \end{array} \right) \quad a \neq 1$$
  1. Find \(\mathbf { A } ^ { - 1 }\) in terms of \(a\).
    . The straight line \(l _ { 1 }\) is mapped onto the straight line \(l _ { 2 }\) by the transformation represented by the matrix \(\mathbf { B }\). $$\mathbf { B } = \left( \begin{array} { r r r } 1 & - 1 & 1
    1 & 1 & 1
    1 & 2 & 4 \end{array} \right)$$ The equation of \(l _ { 2 }\) is $$( \mathbf { r } - ( 12 \mathbf { i } + 4 \mathbf { j } + 6 \mathbf { k } ) ) \times ( - 6 \mathbf { i } + 2 \mathbf { j } + 3 \mathbf { k } ) = \mathbf { 0 }$$
  2. Find a vector equation for the line \(l _ { 1 }\)
Question 7
View details
7. The curve \(C\) has parametric equations $$x = \cosh t + t , \quad y = \cosh t - t \quad 0 \leqslant t \leqslant \ln 3$$
  1. Show that $$\left( \frac { \mathrm { d } x } { \mathrm {~d} t } \right) ^ { 2 } + \left( \frac { \mathrm { d } y } { \mathrm {~d} t } \right) ^ { 2 } = 2 \cosh ^ { 2 } t$$ The curve \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis. The area of the curved surface generated is given by \(S\).
  2. Show that $$S = 2 \pi \sqrt { 2 } \int _ { 0 } ^ { \ln 3 } \left( \cosh ^ { 2 } t - t \cosh t \right) d t$$
  3. Hence find the value of \(S\), giving your answer in the form $$\frac { \pi \sqrt { 2 } } { 9 } ( a + b \ln 3 )$$ where \(a\) and \(b\) are constants to be determined.
Question 8
View details
8. The plane \(\Pi _ { 1 }\) has equation $$x - 5 y + 3 z = 11$$ The plane \(\Pi _ { 2 }\) has equation $$3 x - 2 y + 2 z = 7$$ The planes \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\) intersect in the line \(l\).
  1. Find a vector equation for \(l\), giving your answer in the form \(\mathbf { r } = \mathbf { a } + \lambda \mathbf { b }\) where \(\mathbf { a }\) and \(\mathbf { b }\) are constant vectors and \(\lambda\) is a scalar parameter. The point \(P ( 2,0,3 )\) lies on \(\Pi _ { 1 }\) The line \(m\), which passes through \(P\), is parallel to \(l\). The point \(Q ( 3,2,1 )\) lies on \(\Pi _ { 2 }\)
    The line \(n\), which passes through \(Q\), is also parallel to \(l\).
  2. Find, in exact simplified form, the shortest distance between \(m\) and \(n\).
    VIIV STHI NI JINM ION OCVIAV SIHI NI JMAM/ION OCVIAV SIHL NI JIIYM ION OO