3.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c16c17b6-2c24-4939-b3b5-63cd63646b76-06_291_481_255_733}
\captionsetup{labelformat=empty}
\caption{Figure 2}
\end{figure}
A particle \(P\) of mass 0.75 kg is moving along a straight line on a horizontal surface. At the instant when the speed of \(P\) is \(6 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), it receives an impulse of magnitude \(\sqrt { 24 } \mathrm { Ns }\). The impulse acts in the plane of the horizontal surface. At the instant when \(P\) receives the impulse, the line of action of the impulse makes an angle of \(60 ^ { \circ }\) with the direction of motion of \(P\), as shown in Figure 2.
Find
- the speed of \(P\) immediately after receiving the impulse,
- the size of the angle between the direction of motion of \(P\) immediately before receiving the impulse and the direction of motion of \(P\) immediately after receiving the impulse.
\includegraphics[max width=\textwidth, alt={}, center]{c16c17b6-2c24-4939-b3b5-63cd63646b76-06_2252_51_311_1980}
\includegraphics[max width=\textwidth, alt={}, center]{c16c17b6-2c24-4939-b3b5-63cd63646b76-07_36_65_2722_109}