2.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c16c17b6-2c24-4939-b3b5-63cd63646b76-04_239_796_246_577}
\captionsetup{labelformat=empty}
\caption{Figure 1}
\end{figure}
A rough straight ramp is fixed to horizontal ground. The ramp is inclined at an angle \(\theta\) to the horizontal, where \(\sin \theta = \frac { 1 } { 7 }\). The points \(A\) and \(B\) are on a line of greatest slope of the ramp with \(A B = 2.5 \mathrm {~m}\) and \(B\) above \(A\), as shown in Figure 1. A package of mass 2 kg is projected up the ramp from \(A\) with speed \(4 \mathrm {~ms} ^ { - 1 }\) and first comes to instantaneous rest at \(B\). The coefficient of friction between the package and the ramp is \(\mu\). The package is modelled as a particle.
Use the work-energy principle to find the value of \(\mu\).
(6)