4.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{ed659098-c1cf-4ee1-a12a-bf8b6c42db95-07_513_993_276_479}
\captionsetup{labelformat=empty}
\caption{Figure 3}
\end{figure}
A beam \(A B\) has weight \(W\) newtons and length 4 m . The beam is held in equilibrium in a horizontal position by two vertical ropes attached to the beam. One rope is attached to \(A\) and the other rope is attached to the point \(C\) on the beam, where \(A C = d\) metres, as shown in Figure 3. The beam is modelled as a uniform rod and the ropes as light inextensible strings. The tension in the rope attached at \(C\) is double the tension in the rope attached at \(A\).
- Find the value of \(d\).
A small load of weight \(k W\) newtons is attached to the beam at \(B\). The beam remains in equilibrium in a horizontal position. The load is modelled as a particle. The tension in the rope attached at \(C\) is now four times the tension in the rope attached at \(A\).
- Find the value of \(k\).