2.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{ed659098-c1cf-4ee1-a12a-bf8b6c42db95-03_435_840_269_561}
\captionsetup{labelformat=empty}
\caption{Figure 2}
\end{figure}
A rough plane is inclined at \(40 ^ { \circ }\) to the horizontal. Two points \(A\) and \(B\) are 3 metres apart and lie on a line of greatest slope of the inclined plane, with \(A\) above \(B\), as shown in Figure 2. A particle \(P\) of mass \(m \mathrm {~kg}\) is held at rest on the plane at \(A\). The coefficient of friction between \(P\) and the plane is \(\frac { 1 } { 2 }\). The particle is released.
- Find the acceleration of \(P\) down the plane.
- Find the speed of \(P\) at \(B\).