3. A car starts from rest and moves with constant acceleration along a straight horizontal road. The car reaches a speed of \(V \mathrm {~m} \mathrm {~s} ^ { - 1 }\) in 20 seconds. It moves at constant speed \(V \mathrm {~m} \mathrm {~s} ^ { - 1 }\) for the next 30 seconds, then moves with constant deceleration \(\frac { 1 } { 2 } \mathrm {~m} \mathrm {~s} ^ { - 2 }\) until it has speed \(8 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). It moves at speed \(8 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) for the next 15 seconds and then moves with constant deceleration \(\frac { 1 } { 3 } \mathrm {~m} \mathrm {~s} ^ { - 2 }\) until it comes to rest.
- Sketch, in the space below, a speed-time graph for this journey.
In the first 20 seconds of this journey the car travels 140 m .
Find
- the value of \(V\),
- the total time for this journey,
- the total distance travelled by the car.