A car is moving on a straight horizontal road. At time \(t = 0\), the car is moving with speed \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and is at the point \(A\). The car maintains the speed of \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) for 25 s . The car then moves with constant deceleration \(0.4 \mathrm {~m} \mathrm {~s} ^ { - 2 }\), reducing its speed from \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) to \(8 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The car then moves with constant speed \(8 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) for 60 s . The car then moves with constant acceleration until it is moving with speed \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at the point \(B\).
Sketch a speed-time graph to represent the motion of the car from \(A\) to \(B\).
Find the time for which the car is decelerating.
Given that the distance from \(A\) to \(B\) is 1960 m ,
find the time taken for the car to move from \(A\) to \(B\).