4. A car is moving along a straight horizontal road. The speed of the car as it passes the point \(A\) is \(25 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and the car maintains this speed for 30 s . The car then decelerates uniformly to a speed of \(10 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The speed of \(10 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) is then maintained until the car passes the point \(B\). The time taken to travel from \(A\) to \(B\) is 90 s and \(A B = 1410 \mathrm {~m}\).
- Sketch, in the space below, a speed-time graph to show the motion of the car from \(A\) to \(B\).
- Calculate the deceleration of the car as it decelerates from \(25 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) to \(10 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
Question 4 continued \(\_\_\_\_\)