Edexcel M1 (Mechanics 1) 2008 June

Question 1
View details
  1. Two particles \(P\) and \(Q\) have mass 0.4 kg and 0.6 kg respectively. The particles are initially at rest on a smooth horizontal table. Particle \(P\) is given an impulse of magnitude 3 N s in the direction \(P Q\).
    1. Find the speed of \(P\) immediately before it collides with \(Q\).
    Immediately after the collision between \(P\) and \(Q\), the speed of \(Q\) is \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  2. Show that immediately after the collision \(P\) is at rest.
Question 2
View details
2. At time \(t = 0\), a particle is projected vertically upwards with speed \(u \mathrm {~m} \mathrm {~s} ^ { - 1 }\) from a point 10 m above the ground. At time \(T\) seconds, the particle hits the ground with speed \(17.5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Find
  1. the value of \(u\),
  2. the value of \(T\).
Question 3
View details
3. A particle \(P\) of mass 0.4 kg moves under the action of a single constant force \(\mathbf { F }\) newtons. The acceleration of \(P\) is \(( 6 \mathbf { i } + 8 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 2 }\). Find
  1. the angle between the acceleration and \(\mathbf { i }\),
  2. the magnitude of \(\mathbf { F }\). At time \(t\) seconds the velocity of \(P\) is \(\mathbf { v } \mathrm { m } \mathrm { s } ^ { - 1 }\). Given that when \(t = 0 , \mathbf { v } = 9 \mathbf { i } - 10 \mathbf { j }\), (c) find the velocity of \(P\) when \(t = 5\).
Question 4
View details
4. A car is moving along a straight horizontal road. The speed of the car as it passes the point \(A\) is \(25 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and the car maintains this speed for 30 s . The car then decelerates uniformly to a speed of \(10 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The speed of \(10 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) is then maintained until the car passes the point \(B\). The time taken to travel from \(A\) to \(B\) is 90 s and \(A B = 1410 \mathrm {~m}\).
  1. Sketch, in the space below, a speed-time graph to show the motion of the car from \(A\) to \(B\).
  2. Calculate the deceleration of the car as it decelerates from \(25 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) to \(10 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Question 4 continued \(\_\_\_\_\)
Question 5
View details
5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9dbbbc01-fb66-460d-a42e-2c37ec8b451a-07_357_968_274_484} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Two forces \(\mathbf { P }\) and \(\mathbf { Q }\) act on a particle at a point \(O\). The force \(\mathbf { P }\) has magnitude 15 N and the force \(\mathbf { Q }\) has magnitude \(X\) newtons. The angle between \(\mathbf { P }\) and \(\mathbf { Q }\) is \(150 ^ { \circ }\), as shown in Figure 1. The resultant of \(\mathbf { P }\) and \(\mathbf { Q }\) is \(\mathbf { R }\). Given that the angle between \(\mathbf { R }\) and \(\mathbf { Q }\) is \(50 ^ { \circ }\), find
  1. the magnitude of \(\mathbf { R }\),
  2. the value of \(X\).
Question 6
View details
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9dbbbc01-fb66-460d-a42e-2c37ec8b451a-08_392_678_260_614} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} A plank \(A B\) has mass 12 kg and length 2.4 m . A load of mass 8 kg is attached to the plank at the point \(C\), where \(A C = 0.8 \mathrm {~m}\). The loaded plank is held in equilibrium, with \(A B\) horizontal, by two vertical ropes, one attached at \(A\) and the other attached at \(B\), as shown in Figure 2. The plank is modelled as a uniform rod, the load as a particle and the ropes as light inextensible strings.
  1. Find the tension in the rope attached at \(B\). The plank is now modelled as a non-uniform rod. With the new model, the tension in the rope attached at \(A\) is 10 N greater than the tension in the rope attached at \(B\).
  2. Find the distance of the centre of mass of the plank from \(A\).
Question 7
View details
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9dbbbc01-fb66-460d-a42e-2c37ec8b451a-10_291_726_265_607} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} A package of mass 4 kg lies on a rough plane inclined at \(30 ^ { \circ }\) to the horizontal. The package is held in equilibrium by a force of magnitude 45 N acting at an angle of \(50 ^ { \circ }\) to the plane, as shown in Figure 3. The force is acting in a vertical plane through a line of greatest slope of the plane. The package is in equilibrium on the point of moving up the plane. The package is modelled as a particle. Find
  1. the magnitude of the normal reaction of the plane on the package,
  2. the coefficient of friction between the plane and the package.
Question 8
View details
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9dbbbc01-fb66-460d-a42e-2c37ec8b451a-12_131_940_269_498} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} Two particles \(P\) and \(Q\), of mass 2 kg and 3 kg respectively, are joined by a light inextensible string. Initially the particles are at rest on a rough horizontal plane with the string taut. A constant force \(\mathbf { F }\) of magnitude 30 N is applied to \(Q\) in the direction \(P Q\), as shown in Figure 4. The force is applied for 3 s and during this time \(Q\) travels a distance of 6 m . The coefficient of friction between each particle and the plane is \(\mu\). Find
  1. the acceleration of \(Q\),
  2. the value of \(\mu\),
  3. the tension in the string.
  4. State how in your calculation you have used the information that the string is inextensible. When the particles have moved for 3 s , the force \(\mathbf { F }\) is removed.
  5. Find the time between the instant that the force is removed and the instant that \(Q\) comes to rest.