3. A transformation maps points from the \(z\)-plane, where \(z = x + \mathrm { i } y\), to the \(w\)-plane, where \(w = u + \mathrm { i } v\). The transformation is given by
$$w = \frac { ( 2 + \mathrm { i } ) z + 4 } { z - \mathrm { i } } \quad z \neq \mathrm { i }$$
The transformation maps the imaginary axis in the \(z\)-plane onto the line \(l\) in the \(w\)-plane.
Determine a Cartesian equation of \(l\), giving your answer in the form \(a u + b v + c = 0\) where \(a , b\) and \(c\) are integers to be found.
(6)