Edexcel F2 (Further Pure Mathematics 2) 2021 October

Question 1
View details
  1. Solve the equation
$$z ^ { 5 } - 32 i = 0$$ giving each answer in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\) where \(0 < \theta < 2 \pi\)
Question 2
View details
2. Use algebra to determine the set of values of \(x\) for which $$\frac { x } { 2 - x } \leqslant \frac { x + 3 } { x }$$ (Solutions relying entirely on graphical methods are not acceptable.)
(8)
Question 3
View details
3. A transformation maps points from the \(z\)-plane, where \(z = x + \mathrm { i } y\), to the \(w\)-plane, where \(w = u + \mathrm { i } v\). The transformation is given by $$w = \frac { ( 2 + \mathrm { i } ) z + 4 } { z - \mathrm { i } } \quad z \neq \mathrm { i }$$ The transformation maps the imaginary axis in the \(z\)-plane onto the line \(l\) in the \(w\)-plane.
Determine a Cartesian equation of \(l\), giving your answer in the form \(a u + b v + c = 0\) where \(a , b\) and \(c\) are integers to be found.
(6)
Question 4
View details
4. (a) Determine the general solution of the differential equation $$( x + 1 ) \frac { \mathrm { d } y } { \mathrm {~d} x } - x y = \mathrm { e } ^ { 3 x } \quad x > - 1$$ giving your answer in the form \(y = \mathrm { f } ( x )\).
(b) Determine the particular solution of the differential equation for which \(y = 5\) when \(x = 0\)
Question 5
View details
5. Given that \(y = \tan ^ { 2 } x\)
  1. show that $$\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } } = 8 \tan x \sec ^ { 2 } x \left( p \sec ^ { 2 } x + q \right)$$ where \(p\) and \(q\) are integers to be determined.
  2. Hence determine the Taylor series expansion about \(\frac { \pi } { 3 }\) of \(\tan ^ { 2 } x\) in ascending powers of \(\left( x - \frac { \pi } { 3 } \right)\) up to and including the term in \(\left( x - \frac { \pi } { 3 } \right) ^ { 3 }\), giving each coefficient in simplest form.
    \includegraphics[max width=\textwidth, alt={}, center]{8fa1e7da-009f-4b7f-9fa8-21a1768bfd73-19_33_407_306_258}
    \includegraphics[max width=\textwidth, alt={}, center]{8fa1e7da-009f-4b7f-9fa8-21a1768bfd73-19_58_458_2752_150}
Question 6
View details
6. The complex number \(z\) on an Argand diagram is represented by the point \(P\) where $$| z + 1 - 13 i | = 3 | z - 7 - 5 i |$$ Given that the locus of \(P\) is a circle,
  1. determine the centre and radius of this circle. The complex number \(w\), on the same Argand diagram, is represented by the point \(Q\), where $$\arg ( w - 8 - 6 \mathrm { i } ) = - \frac { 3 \pi } { 4 }$$ Given that the locus of \(P\) intersects the locus of \(Q\) at the point \(R\),
  2. determine the complex number representing \(R\).
Question 7
View details
7. (a) Show that the transformation \(x = t ^ { 2 }\) transforms the differential equation $$4 x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 ( 1 + 2 \sqrt { x } ) \frac { \mathrm { d } y } { \mathrm {~d} x } - 15 y = 15 x$$ into the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} t } - 15 y = 15 t ^ { 2 }$$ (b) Solve differential equation (II) to determine \(y\) in terms of \(t\).
(c) Hence determine the general solution of differential equation (I).
\includegraphics[max width=\textwidth, alt={}, center]{8fa1e7da-009f-4b7f-9fa8-21a1768bfd73-24_2258_53_308_1980}
Question 8
View details
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8fa1e7da-009f-4b7f-9fa8-21a1768bfd73-28_735_892_264_529} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} The curve \(C\) shown in Figure 1 has polar equation $$r = 1 + \sin \theta \quad - \frac { \pi } { 2 } < \theta \leqslant \frac { \pi } { 2 }$$ The point \(P\) lies on \(C\) such that the tangent to \(C\) at \(P\) is perpendicular to the initial line.
  1. Use calculus to determine the polar coordinates of \(P\). The tangent to \(C\) at the point \(Q\) where \(\theta = \frac { \pi } { 2 }\) is parallel to the initial line.
    The tangent to \(C\) at \(Q\) meets the tangent to \(C\) at \(P\) at the point \(S\), as shown in Figure 1.
    The finite region \(R\), shown shaded in Figure 1, is bounded by the line segments \(Q S , S P\) and the curve \(C\).
  2. Use algebraic integration to show that the area of \(R\) is $$\frac { 1 } { 32 } ( a \sqrt { 3 } + b \pi )$$ where \(a\) and \(b\) are integers to be determined.
    (6)
Question 9
View details
  1. (a) Show that
$$n ^ { 5 } - ( n - 1 ) ^ { 5 } \equiv 5 n ^ { 4 } - 10 n ^ { 3 } + 10 n ^ { 2 } - 5 n + 1$$ (b) Hence, using the method of differences, show that for all integer values of \(n\), $$\sum _ { r = 1 } ^ { n } r ^ { 4 } = \frac { 1 } { 30 } n ( n + 1 ) ( 2 n + 1 ) \left( a n ^ { 2 } + b n + c \right)$$ where \(a\), \(b\) and \(c\) are integers to be determined.