Edexcel F3 (Further Pure Mathematics 3) 2016 June

Question 1
View details
  1. The curve \(C\) has equation
$$y = 9 \cosh x + 3 \sinh x + 7 x$$ Use differentiation to find the exact \(x\) coordinate of the stationary point of \(C\), giving your answer as a natural logarithm.
Question 2
View details
2. An ellipse has equation $$\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1$$ The point \(P\) lies on the ellipse and has coordinates \(( 5 \cos \theta , 2 \sin \theta ) , 0 < \theta < \frac { \pi } { 2 }\) The line \(L\) is a normal to the ellipse at the point \(P\).
  1. Show that an equation for \(L\) is $$5 x \sin \theta - 2 y \cos \theta = 21 \sin \theta \cos \theta$$ Given that the line \(L\) crosses the \(y\)-axis at the point \(Q\) and that \(M\) is the midpoint of \(P Q\),
  2. find the exact area of triangle \(O P M\), where \(O\) is the origin, giving your answer as a multiple of \(\sin 2 \theta\)
    WIHN SIHI NITIIUM ION OC
    VIUV SIHI NI JAHM ION OC
    VI4V SIHI NIS IIIM ION OC
Question 3
View details
3. Without using a calculator, find
  1. \(\int _ { - 2 } ^ { 1 } \frac { 1 } { x ^ { 2 } + 4 x + 13 } \mathrm {~d} x\), giving your answer as a multiple of \(\pi\),
  2. \(\int _ { - 1 } ^ { 4 } \frac { 1 } { \sqrt { 4 x ^ { 2 } - 12 x + 34 } } \mathrm {~d} x\), giving your answer in the form \(p \ln ( q + r \sqrt { 2 } )\),
    where \(p , q\) and \(r\) are rational numbers to be found.
Question 4
View details
4. $$\mathbf { M } = \left( \begin{array} { r r r } 1 & k & 0
- 1 & 1 & 1
1 & k & 3 \end{array} \right) , \text { where } k \text { is a constant }$$
  1. Find \(\mathbf { M } ^ { - 1 }\) in terms of \(k\). Hence, given that \(k = 0\)
  2. find the matrix \(\mathbf { N }\) such that $$\mathbf { M N } = \left( \begin{array} { r r r } 3 & 5 & 6
    4 & - 1 & 1
    3 & 2 & - 3 \end{array} \right)$$
Question 5
View details
5. Given that \(y = \operatorname { artanh } ( \cos x )\)
  1. show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = - \operatorname { cosec } x$$
  2. Hence find the exact value of $$\int _ { 0 } ^ { \frac { \pi } { 6 } } \cos x \operatorname { artanh } ( \cos x ) d x$$ giving your answer in the form \(a \ln ( b + c \sqrt { 3 } ) + d \pi\), where \(a , b , c\) and \(d\) are rational numbers to be found.
    (5)
Question 6
View details
6. The coordinates of the points \(A , B\) and \(C\) relative to a fixed origin \(O\) are ( \(1,2,3\) ), \(( - 1,3,4 )\) and \(( 2,1,6 )\) respectively. The plane \(\Pi\) contains the points \(A , B\) and \(C\).
  1. Find a cartesian equation of the plane \(\Pi\). The point \(D\) has coordinates \(( k , 4,14 )\) where \(k\) is a positive constant.
    Given that the volume of the tetrahedron \(A B C D\) is 6 cubic units,
  2. find the value of \(k\).
    VIIIV SIHI NI IIIIM I I O N OAVI4V SIHI NI JIIIM ION OCVJYV SIHI NI JIIIM ION OO
Question 7
View details
7. The curve \(C\) has parametric equations $$x = 3 t ^ { 4 } , \quad y = 4 t ^ { 3 } , \quad 0 \leqslant t \leqslant 1$$ The curve \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis. The area of the curved surface generated is \(S\).
  1. Show that $$S = k \pi \int _ { 0 } ^ { 1 } t ^ { 5 } \left( t ^ { 2 } + 1 \right) ^ { \frac { 1 } { 2 } } \mathrm {~d} t$$ where \(k\) is a constant to be found.
  2. Use the substitution \(u ^ { 2 } = t ^ { 2 } + 1\) to find the value of \(S\), giving your answer in the form \(p \pi ( 11 \sqrt { 2 } - 4 )\) where \(p\) is a rational number to be found.
Question 8
View details
8. $$I _ { n } = \int _ { 0 } ^ { \ln 2 } \tanh ^ { 2 n } x \mathrm {~d} x , \quad n \geqslant 0$$
  1. Show that, for \(n \geqslant 1\)
  2. Hence show that $$\int _ { 0 } ^ { \ln 2 } \tanh ^ { 4 } x \mathrm {~d} x = p + \ln 2$$ where \(p\) is a rational number to be found.
    8. \(\quad I _ { n } = \int _ { 0 } ^ { \ln 2 } \tanh ^ { 2 n } x \mathrm {~d} x , \quad n \geqslant 0\)
  3. Show that, for \(n \geqslant 1\) $$I _ { n } = I _ { n - 1 } - \frac { 1 } { 2 n - 1 } \left( \frac { 3 } { 5 } \right) ^ { 2 n - 1 }$$