Edexcel F3 2015 June — Question 8

Exam BoardEdexcel
ModuleF3 (Further Pure Mathematics 3)
Year2015
SessionJune
TopicHyperbolic functions

  1. (a) Show that, under the substitution \(x = \frac { 3 } { 4 } \sinh u\),
$$\int \frac { x ^ { 2 } } { \sqrt { 16 x ^ { 2 } + 9 } } \mathrm {~d} x = k \int ( \cosh 2 u - 1 ) \mathrm { d } u$$ where \(k\) is a constant to be determined.
(b) Hence show that $$\int _ { 0 } ^ { 1 } \frac { 64 x ^ { 2 } } { \sqrt { 16 x ^ { 2 } + 9 } } \mathrm {~d} x = p + q \ln 3$$ where \(p\) and \(q\) are rational numbers to be found.