Edexcel F3 2015 June — Question 6

Exam BoardEdexcel
ModuleF3 (Further Pure Mathematics 3)
Year2015
SessionJune
TopicParametric equations

6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0ddee434-f7e1-4f56-91fc-f487112dbf6b-11_709_1269_292_349} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the curve \(C\) with parametric equations $$x = 2 \cos \theta - \cos 2 \theta , y = 2 \sin \theta - \sin 2 \theta , \quad 0 \leqslant \theta \leqslant \pi$$
  1. Show that $$\left( \frac { \mathrm { d } x } { \mathrm {~d} \theta } \right) ^ { 2 } + \left( \frac { \mathrm { d } y } { \mathrm {~d} \theta } \right) ^ { 2 } = 8 ( 1 - \cos \theta )$$ The curve \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
  2. Find the area of the surface generated, giving your answer in the form \(k \pi\), where \(k\) is a rational number.