Edexcel F3 2021 January — Question 5

Exam BoardEdexcel
ModuleF3 (Further Pure Mathematics 3)
Year2021
SessionJanuary
TopicInvariant lines and eigenvalues and vectors

5. $$\mathbf { M } = \left( \begin{array} { r r r } 6 & - 2 & - 1
- 2 & 6 & - 1
- 1 & - 1 & 5 \end{array} \right)$$ Given that 8 is an eigenvalue of \(\mathbf { M }\)
  1. determine an eigenvector corresponding to the eigenvalue 8
  2. Determine the other two eigenvalues of \(\mathbf { M }\).
  3. Hence find an orthogonal matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { P } ^ { T } \mathbf { M P } = \mathbf { D }\)
    5.