Edexcel F3 2021 January — Question 4

Exam BoardEdexcel
ModuleF3 (Further Pure Mathematics 3)
Year2021
SessionJanuary
TopicHyperbolic functions

4. Using the substitution \(x = 4 \cosh \theta\) show that $$\int \frac { 1 } { \left( x ^ { 2 } - 16 \right) ^ { \frac { 3 } { 2 } } } \mathrm {~d} x = \frac { a x } { \sqrt { x ^ { 2 } - 16 } } + c \quad | x | > 4$$ where \(a\) is a constant to be determined and \(c\) is an arbitrary constant.
(6)