4. Using the substitution \(x = 4 \cosh \theta\) show that
$$\int \frac { 1 } { \left( x ^ { 2 } - 16 \right) ^ { \frac { 3 } { 2 } } } \mathrm {~d} x = \frac { a x } { \sqrt { x ^ { 2 } - 16 } } + c \quad | x | > 4$$
where \(a\) is a constant to be determined and \(c\) is an arbitrary constant.
(6)