4. Use the Taylor Series method to find the series solution, ascending up to and including the term in \(x ^ { 3 }\), of the differential equation
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + y \frac { \mathrm {~d} y } { \mathrm {~d} x } + y ^ { 2 } = 3 x + 4$$
given that \(\frac { \mathrm { dy } } { \mathrm { dx } } = y = 1\) at \(x = 0\).
(Total 8 marks)