7. (a) Show that the substitution \(x = e ^ { u }\) transforms the differential equation
$$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y = - x ^ { - 2 } , \quad x > 0$$
into the equation
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} u ^ { 2 } } - 3 \frac { \mathrm {~d} y } { \mathrm {~d} u } + 2 y = - \mathrm { e } ^ { - 2 u }$$
(b) Find the general solution of the differential equation (II).
(c) Hence obtain the general solution of the differential equation (I) giving your answer in the form \(y = \mathrm { f } ( x )\)