Edexcel FP2 (Further Pure Mathematics 2) 2016 June

Question 1
View details
  1. Use algebra to find the set of values of \(x\) for which
$$\frac { x } { x + 1 } < \frac { 2 } { x + 2 }$$
Question 2
View details
2. (a) Show that, for \(r > 0\) $$r - 3 + \frac { 1 } { r + 1 } - \frac { 1 } { r + 2 } = \frac { r ^ { 3 } - 7 r - 5 } { ( r + 1 ) ( r + 2 ) }$$ (b) Hence prove, using the method of differences, that $$\sum _ { r = 1 } ^ { n } \frac { r ^ { 3 } - 7 r - 5 } { ( r + 1 ) ( r + 2 ) } = \frac { n \left( n ^ { 2 } + a n + b \right) } { 2 ( n + 2 ) }$$ where \(a\) and \(b\) are constants to be found.
Question 3
View details
3. (a) Find the four roots of the equation \(z ^ { 4 } = 8 ( \sqrt { 3 } + \mathrm { i } )\) in the form \(z = r \mathrm { e } ^ { \mathrm { i } \theta }\)
(b) Show these roots on an Argand diagram.
Question 4
View details
4. (i) $$p \frac { \mathrm {~d} x } { \mathrm {~d} t } + q x = r \quad \text { where } p , q \text { and } r \text { are constants }$$ Given that \(x = 0\) when \(t = 0\)
  1. find \(x\) in terms of \(t\)
  2. find the limiting value of \(x\) as \(t \rightarrow \infty\)
    (ii) $$\frac { \mathrm { d } y } { \mathrm {~d} \theta } + 2 y = \sin \theta$$ Given that \(y = 0\) when \(\theta = 0\), find \(y\) in terms of \(\theta\)
Question 5
View details
5. (a) Use de Moivre's theorem to show that $$\sin ^ { 5 } \theta \equiv a \sin 5 \theta + b \sin 3 \theta + c \sin \theta$$ where \(a\), \(b\) and \(c\) are constants to be found.
(b) Hence show that \(\int _ { 0 } ^ { \frac { \pi } { 3 } } \sin ^ { 5 } \theta \mathrm {~d} \theta = \frac { 53 } { 480 }\)
VILM SIHI NITIIIUMI ON OC
VILV SIHI NI III HM ION OC
VALV SIHI NI JIIIM ION OO
Question 6
View details
6. (a) Find the Taylor series expansion about \(\frac { \pi } { 4 }\) of \(\tan x\) in ascending powers of \(\left( x - \frac { \pi } { 4 } \right)\) up to and including the term in \(\left( x - \frac { \pi } { 4 } \right) ^ { 3 }\).
(b) Deduce that an approximation for \(\tan \frac { 5 \pi } { 12 }\) is \(1 + \frac { \pi } { 3 } + \frac { \pi ^ { 2 } } { 18 } + \frac { \pi ^ { 3 } } { 81 }\)
Question 7
View details
7. (a) Show that the substitution \(x = e ^ { u }\) transforms the differential equation $$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y = - x ^ { - 2 } , \quad x > 0$$ into the equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} u ^ { 2 } } - 3 \frac { \mathrm {~d} y } { \mathrm {~d} u } + 2 y = - \mathrm { e } ^ { - 2 u }$$ (b) Find the general solution of the differential equation (II).
(c) Hence obtain the general solution of the differential equation (I) giving your answer in the form \(y = \mathrm { f } ( x )\)
Question 8
View details
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{18620cc5-2377-480b-b815-63bfc6a9760a-15_618_942_255_584} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} The curve \(C _ { 1 }\) with equation $$r = 7 \cos \theta , \quad - \frac { \pi } { 2 } < \theta \leqslant \frac { \pi } { 2 }$$ and the curve \(C _ { 2 }\) with equation $$r = 3 ( 1 + \cos \theta ) , \quad - \pi < \theta \leqslant \pi$$ are shown on Figure 1.
The curves \(C _ { 1 }\) and \(C _ { 2 }\) both pass through the pole and intersect at the point \(P\) and the point \(Q\).
  1. Find the polar coordinates of \(P\) and the polar coordinates of \(Q\). The regions enclosed by the curve \(C _ { 1 }\) and the curve \(C _ { 2 }\) overlap, and the common region \(R\) is shaded in Figure 1.
  2. Find the area of \(R\).