Edexcel FP2 2013 June — Question 3

Exam BoardEdexcel
ModuleFP2 (Further Pure Mathematics 2)
Year2013
SessionJune
TopicTaylor series
TypeFind series for logarithmic function

3. $$f ( x ) = \ln ( 1 + \sin k x )$$ where \(k\) is a constant, \(x \in \mathbb { R }\) and \(- \frac { \pi } { 2 } < k x < \frac { 3 \pi } { 2 }\)
  1. Find f \({ } ^ { \prime } ( x )\)
  2. Show that \(\mathrm { f } ^ { \prime \prime } ( x ) = \frac { - k ^ { 2 } } { 1 + \sin k x }\)
  3. Find the Maclaurin series of \(\mathrm { f } ( x )\), in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\).