Edexcel F2 2022 January — Question 8

Exam BoardEdexcel
ModuleF2 (Further Pure Mathematics 2)
Year2022
SessionJanuary
TopicFirst order differential equations (integrating factor)

  1. (a) Show that the transformation \(v = y - 2 x\) transforms the differential equation
$$\frac { \mathrm { d } y } { \mathrm {~d} x } + 2 y x ( y - 4 x ) = 2 - 8 x ^ { 3 }$$ into the differential equation $$\frac { \mathrm { d } v } { \mathrm {~d} x } = - 2 x v ^ { 2 }$$ (b) Solve the differential equation (II) to determine \(v\) as a function of \(x\)
(c) Hence obtain the general solution of the differential equation (I).
(d) Sketch the solution curve that passes through the point \(( - 1 , - 1 )\). On your sketch show clearly the equation of any horizontal or vertical asymptotes.
You do not need to find the coordinates of any intercepts with the coordinate axes or the coordinates of any stationary points.
\includegraphics[max width=\textwidth, alt={}]{0d458344-42cb-48d1-90b3-e071df8ea7bb-32_2817_1962_105_105}