Edexcel F2 2022 January — Question 6

Exam BoardEdexcel
ModuleF2 (Further Pure Mathematics 2)
Year2022
SessionJanuary
TopicSequences and series, recurrence and convergence

6. Given that \(A > B > 0\), by letting \(x = \arctan A\) and \(y = \arctan B\)
  1. prove that $$\arctan A - \arctan B = \arctan \left( \frac { A - B } { 1 + A B } \right)$$
  2. Show that when \(A = r + 2\) and \(B = r\) $$\frac { A - B } { 1 + A B } = \frac { 2 } { ( 1 + r ) ^ { 2 } }$$
  3. Hence, using the method of differences, show that $$\sum _ { r = 1 } ^ { n } \arctan \frac { 2 } { ( 1 + r ) ^ { 2 } } = \arctan ( n + p ) + \arctan ( n + q ) - \arctan 2 - \frac { \pi } { 4 }$$ where \(p\) and \(q\) are integers to be determined.
  4. Hence, making your reasoning clear, determine $$\sum _ { r = 1 } ^ { \infty } \arctan \left( \frac { 2 } { ( 1 + r ) ^ { 2 } } \right)$$ giving the answer in the form \(k \pi - \arctan 2\), where \(k\) is a constant.