Edexcel FP1 2017 June — Question 5

Exam BoardEdexcel
ModuleFP1 (Further Pure Mathematics 1)
Year2017
SessionJune
TopicMatrices

5. (i) $$\mathbf { A } = \left( \begin{array} { l l } p & 2
3 & p \end{array} \right) , \quad \mathbf { B } = \left( \begin{array} { r r } - 5 & 4
6 & - 5 \end{array} \right)$$ where \(p\) is a constant.
  1. Find, in terms of \(p\), the matrix \(\mathbf { A B }\) Given that $$\mathbf { A B } + 2 \mathbf { A } = k \mathbf { I }$$ where \(k\) is a constant and \(\mathbf { I }\) is the \(2 \times 2\) identity matrix,
  2. find the value of \(p\) and the value of \(k\).
    (ii) $$\mathbf { M } = \left( \begin{array} { r r } a & - 9
    1 & 2 \end{array} \right) , \text { where } a \text { is a real constant }$$ Triangle \(T\) has an area of 15 square units.
    Triangle \(T\) is transformed to the triangle \(T ^ { \prime }\) by the transformation represented by the matrix M. Given that the area of triangle \(T ^ { \prime }\) is 270 square units, find the possible values of \(a\).