4.
$$z = \frac { 4 } { 1 + \mathrm { i } }$$
Find, in the form \(a + \mathrm { i } b\) where \(a , b \in \mathbb { R }\)
- \(Z\)
- \(z ^ { 2 }\)
Given that \(z\) is a complex root of the quadratic equation \(x ^ { 2 } + p x + q = 0\), where \(p\) and \(q\) are real integers,
- find the value of \(p\) and the value of \(q\).