Edexcel FP1 2015 June — Question 6

Exam BoardEdexcel
ModuleFP1 (Further Pure Mathematics 1)
Year2015
SessionJune
TopicProof by induction

  1. (i) Prove by induction that, for \(n \in \mathbb { Z } ^ { + }\),
$$\left( \begin{array} { r r } 1 & 0
- 1 & 5 \end{array} \right) ^ { n } = \left( \begin{array} { c c } 1 & 0
- \frac { 1 } { 4 } \left( 5 ^ { n } - 1 \right) & 5 ^ { n } \end{array} \right)$$ (ii) Prove by induction that, for \(n \in \mathbb { Z } ^ { + }\), $$\sum _ { r = 1 } ^ { n } ( 2 r - 1 ) ^ { 2 } = \frac { 1 } { 3 } n \left( 4 n ^ { 2 } - 1 \right)$$