Edexcel FP1 (Further Pure Mathematics 1) 2011 January

Question 1
View details
1. $$z = 5 - 3 \mathrm { i } , \quad w = 2 + 2 \mathrm { i }$$ Express in the form \(a + b \mathrm { i }\), where \(a\) and \(b\) are real constants,
  1. \(z ^ { 2 }\),
  2. \(\frac { z } { w }\).
Question 2
View details
2. $$\mathbf { A } = \left( \begin{array} { l l } 2 & 0
5 & 3 \end{array} \right) , \quad \mathbf { B } = \left( \begin{array} { r r } - 3 & - 1
5 & 2 \end{array} \right)$$
  1. Find \(\mathbf { A B }\). Given that $$\mathbf { C } = \left( \begin{array} { r r } - 1 & 0
    0 & 1 \end{array} \right)$$
  2. describe fully the geometrical transformation represented by \(\mathbf { C }\),
  3. write down \(\mathbf { C } ^ { 100 }\).
    \includegraphics[max width=\textwidth, alt={}, center]{d20fa710-2d91-4ac2-adbc-46ccdcb93380-03_99_97_2631_1784}
Question 3
View details
3. $$f ( x ) = 5 x ^ { 2 } - 4 x ^ { \frac { 3 } { 2 } } - 6 , \quad x \geqslant 0$$ The root \(\alpha\) of the equation \(\mathrm { f } ( x ) = 0\) lies in the interval \([ 1.6,1.8 ]\).
  1. Use linear interpolation once on the interval \([ 1.6,1.8 ]\) to find an approximation to \(\alpha\). Give your answer to 3 decimal places.
  2. Differentiate \(\mathrm { f } ( x )\) to find \(\mathrm { f } ^ { \prime } ( x )\).
  3. Taking 1.7 as a first approximation to \(\alpha\), apply the Newton-Raphson process once to \(\mathrm { f } ( x )\) to obtain a second approximation to \(\alpha\). Give your answer to 3 decimal places.
Question 4
View details
4. Given that \(2 - 4 \mathrm { i }\) is a root of the equation $$z ^ { 2 } + p z + q = 0 ,$$ where \(p\) and \(q\) are real constants,
  1. write down the other root of the equation,
  2. find the value of \(p\) and the value of \(q\).
Question 5
View details
5. (a) Use the results for \(\sum _ { r = 1 } ^ { n } r , \sum _ { r = 1 } ^ { n } r ^ { 2 }\) and \(\sum _ { r = 1 } ^ { n } r ^ { 3 }\), to prove that $$\sum _ { r = 1 } ^ { n } r ( r + 1 ) ( r + 5 ) = \frac { 1 } { 4 } n ( n + 1 ) ( n + 2 ) ( n + 7 )$$ for all positive integers \(n\).
(b) Hence, or otherwise, find the value of $$\sum _ { r = 20 } ^ { 50 } r ( r + 1 ) ( r + 5 )$$
Question 6
View details
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d20fa710-2d91-4ac2-adbc-46ccdcb93380-07_789_791_228_566} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the parabola \(C\) with equation \(y ^ { 2 } = 36 x\). The point \(S\) is the focus of \(C\).
  1. Find the coordinates of \(S\).
  2. Write down the equation of the directrix of \(C\). Figure 1 shows the point \(P\) which lies on \(C\), where \(y > 0\), and the point \(Q\) which lies on the directrix of \(C\). The line segment \(Q P\) is parallel to the \(x\)-axis. Given that the distance \(P S\) is 25 ,
  3. write down the distance \(Q P\),
  4. find the coordinates of \(P\),
  5. find the area of the trapezium \(O S P Q\).
Question 7
View details
7. $$z = - 24 - 7 i$$
  1. Show \(z\) on an Argand diagram.
  2. Calculate \(\arg z\), giving your answer in radians to 2 decimal places. It is given that $$w = a + b \mathrm { i } , \quad a \in \mathbb { R } , b \in \mathbb { R }$$ Given also that \(| w | = 4\) and \(\arg w = \frac { 5 \pi } { 6 }\),
  3. find the values of \(a\) and \(b\),
  4. find the value of \(| z w |\).
Question 8
View details
8. $$\mathbf { A } = \left( \begin{array} { r r } 2 & - 2
- 1 & 3 \end{array} \right)$$
  1. Find \(\operatorname { det } \mathbf { A }\).
  2. Find \(\mathbf { A } ^ { - 1 }\). The triangle \(R\) is transformed to the triangle \(S\) by the matrix \(\mathbf { A }\). Given that the area of triangle \(S\) is 72 square units,
  3. find the area of triangle \(R\). The triangle \(S\) has vertices at the points \(( 0,4 ) , ( 8,16 )\) and \(( 12,4 )\).
  4. Find the coordinates of the vertices of \(R\).
Question 9
View details
9. A sequence of numbers \(u _ { 1 } , u _ { 2 } , u _ { 3 } , u _ { 4 } , \ldots\) is defined by $$u _ { n + 1 } = 4 u _ { n } + 2 , \quad u _ { 1 } = 2$$ Prove by induction that, for \(n \in \mathbb { Z } ^ { + }\), $$u _ { n } = \frac { 2 } { 3 } \left( 4 ^ { n } - 1 \right)$$
Question 10
View details
10. The point \(P \left( 6 t , \frac { 6 } { t } \right) , t \neq 0\), lies on the rectangular hyperbola \(H\) with equation \(x y = 36\).
  1. Show that an equation for the tangent to \(H\) at \(P\) is $$y = - \frac { 1 } { t ^ { 2 } } x + \frac { 12 } { t }$$ The tangent to \(H\) at the point \(A\) and the tangent to \(H\) at the point \(B\) meet at the point \(( - 9,12 )\).
  2. Find the coordinates of \(A\) and \(B\).