Edexcel F1 2024 June — Question 6

Exam BoardEdexcel
ModuleF1 (Further Pure Mathematics 1)
Year2024
SessionJune
TopicProof by induction

  1. (a) Prove by induction that for \(n \in \mathbb { Z } ^ { + }\)
$$\left( \begin{array} { l l } 1 & r
0 & 2 \end{array} \right) ^ { n } = \left( \begin{array} { c c } 1 & \left( 2 ^ { n } - 1 \right) r
0 & 2 ^ { n } \end{array} \right)$$ where \(r\) is a constant. $$\mathbf { M } = \left( \begin{array} { l l } 4 & 0
0 & 5 \end{array} \right) \quad \mathbf { N } = \left( \begin{array} { r r } 1 & - 2
0 & 2 \end{array} \right) ^ { 4 }$$ The transformation represented by matrix \(\mathbf { M }\) followed by the transformation represented by matrix \(\mathbf { N }\) is represented by the matrix \(\mathbf { B }\)
(b) (i) Determine \(\mathbf { N }\) in the form \(\left( \begin{array} { l l } a & b
c & d \end{array} \right)\) where \(a , b , c\) and \(d\) are integers.
(ii) Determine B Hexagon \(S\) is transformed onto hexagon \(S ^ { \prime }\) by matrix \(\mathbf { B }\)
(c) Given that the area of \(S ^ { \prime }\) is 720 square units, determine the area of \(S\)