A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Stats And Pure
Complex Numbers Argand & Loci
Q5
Edexcel F1 2014 June — Question 5
Exam Board
Edexcel
Module
F1 (Further Pure Mathematics 1)
Year
2014
Session
June
Topic
Complex Numbers Argand & Loci
Given that \(z _ { 1 } = - 3 - 4 \mathrm { i }\) and \(z _ { 2 } = 4 - 3 \mathrm { i }\)
show, on an Argand diagram, the point \(P\) representing \(z _ { 1 }\) and the point \(Q\) representing \(z _ { 2 }\)
Given that \(O\) is the origin, show that \(O P\) is perpendicular to \(O Q\).
Show the point \(R\) on your diagram, where \(R\) represents \(z _ { 1 } + z _ { 2 }\)
Prove that \(O P R Q\) is a square.
This paper
(9 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9