Edexcel F1 (Further Pure Mathematics 1) 2014 June

Question 1
View details
  1. Find the value of
$$\sum _ { r = 1 } ^ { 200 } ( r + 1 ) ( r - 1 )$$
Question 2
View details
2. Given that \(- 2 + 3 \mathrm { i }\) is a root of the equation $$z ^ { 2 } + p z + q = 0$$ where \(p\) and \(q\) are real constants,
  1. write down the other root of the equation.
  2. Find the value of \(p\) and the value of \(q\).
Question 3
View details
3. $$\mathbf { A } = \left( \begin{array} { l l } 4 & - 2
a & - 3 \end{array} \right)$$ where \(a\) is a real constant and \(a \neq 6\)
  1. Find \(\mathbf { A } ^ { - 1 }\) in terms of \(a\). Given that \(\mathbf { A } + 2 \mathbf { A } ^ { - 1 } = \mathbf { I }\), where \(\mathbf { I }\) is the \(2 \times 2\) identity matrix,
  2. find the value of \(a\).
Question 4
View details
4. $$\mathrm { f } ( x ) = x ^ { \frac { 3 } { 2 } } - 3 x ^ { \frac { 1 } { 2 } } - 3 , \quad x > 0$$ Given that \(\alpha\) is the only real root of the equation \(\mathrm { f } ( x ) = 0\),
  1. show that \(4 < \alpha < 5\)
  2. Taking 4.5 as a first approximation to \(\alpha\), apply the Newton-Raphson procedure once to \(\mathrm { f } ( x )\) to find a second approximation to \(\alpha\), giving your answer to 3 decimal places.
    [0pt]
  3. Use linear interpolation once on the interval [4,5] to find another approximation to \(\alpha\), giving your answer to 3 decimal places.
Question 5
View details
  1. Given that \(z _ { 1 } = - 3 - 4 \mathrm { i }\) and \(z _ { 2 } = 4 - 3 \mathrm { i }\)
    1. show, on an Argand diagram, the point \(P\) representing \(z _ { 1 }\) and the point \(Q\) representing \(z _ { 2 }\)
    2. Given that \(O\) is the origin, show that \(O P\) is perpendicular to \(O Q\).
    3. Show the point \(R\) on your diagram, where \(R\) represents \(z _ { 1 } + z _ { 2 }\)
    4. Prove that \(O P R Q\) is a square.
Question 6
View details
6. It is given that \(\alpha\) and \(\beta\) are roots of the equation \(3 x ^ { 2 } + 5 x - 1 = 0\)
  1. Find the exact value of \(\alpha ^ { 3 } + \beta ^ { 3 }\)
  2. Find a quadratic equation which has roots \(\frac { \alpha ^ { 2 } } { \beta }\) and \(\frac { \beta ^ { 2 } } { \alpha }\), giving your answer in the form \(a x ^ { 2 } + b x + c = 0\), where \(a\), \(b\) and \(c\) are integers.
Question 7
View details
7. $$\mathbf { P } = \left( \begin{array} { c c } \frac { \sqrt { 3 } } { 2 } & - \frac { 1 } { 2 }
\frac { 1 } { 2 } & \frac { \sqrt { 3 } } { 2 } \end{array} \right)$$
  1. Describe fully the single geometrical transformation \(U\) represented by the matrix \(\mathbf { P }\). The transformation \(V\), represented by the \(2 \times 2\) matrix \(\mathbf { Q }\), is a reflection in the \(x\)-axis.
  2. Write down the matrix \(\mathbf { Q }\). Given that \(V\) followed by \(U\) is the transformation \(T\), which is represented by the matrix \(\mathbf { R }\),
  3. find the matrix \(\mathbf { R }\).
  4. Show that there is a real number \(k\) for which the transformation \(T\) maps the point \(( 1 , k )\) onto itself. Give the exact value of \(k\) in its simplest form.
Question 8
View details
8. The hyperbola \(H\) has cartesian equation \(x y = 16\) The parabola \(P\) has parametric equations \(x = 8 t ^ { 2 } , y = 16 t\).
  1. Find, using algebra, the coordinates of the point \(A\) where \(H\) meets \(P\). Another point \(B ( 8,2 )\) lies on the hyperbola \(H\).
  2. Find the equation of the normal to \(H\) at the point (8, 2), giving your answer in the form \(y = m x + c\), where \(m\) and \(c\) are constants.
  3. Find the coordinates of the points where this normal at \(B\) meets the parabola \(P\).
Question 9
View details
9. (i) Prove by induction that, for \(n \in \mathbb { Z } ^ { + }\) $$\sum _ { r = 1 } ^ { n } r ( r + 1 ) ( r + 2 ) = \frac { n ( n + 1 ) ( n + 2 ) ( n + 3 ) } { 4 }$$ (ii) Prove by induction that, $$4 ^ { n } + 6 n + 8 \text { is divisible by } 18$$ for all positive integers \(n\).
\includegraphics[max width=\textwidth, alt={}, center]{df5ab400-5cb1-4b51-8b0a-52dc3587f81a-16_62_44_2476_1889}