9. (i) Prove by induction that, for \(n \in \mathbb { Z } ^ { + }\)
$$\sum _ { r = 1 } ^ { n } r ( r + 1 ) ( r + 2 ) = \frac { n ( n + 1 ) ( n + 2 ) ( n + 3 ) } { 4 }$$
(ii) Prove by induction that,
$$4 ^ { n } + 6 n + 8 \text { is divisible by } 18$$
for all positive integers \(n\).
\includegraphics[max width=\textwidth, alt={}, center]{df5ab400-5cb1-4b51-8b0a-52dc3587f81a-16_62_44_2476_1889}