Edexcel F1 2024 January — Question 8

Exam BoardEdexcel
ModuleF1 (Further Pure Mathematics 1)
Year2024
SessionJanuary
TopicSequences and series, recurrence and convergence

  1. (a) Use the standard results for summations to show that, for all positive integers \(n\),
$$\sum _ { r = 1 } ^ { n } r \left( 2 r ^ { 2 } - 3 r - 1 \right) = \frac { 1 } { 2 } n ( n + 1 ) ^ { 2 } ( n - 2 )$$ (b) Hence show that, for all positive integers \(n\), $$\sum _ { r = n } ^ { 2 n } r \left( 2 r ^ { 2 } - 3 r - 1 \right) = \frac { 1 } { 2 } n ( n - 1 ) ( a n + b ) ( c n + d )$$ where \(a\), \(b\), \(c\) and \(d\) are integers to be determined.