Edexcel F1 2016 January — Question 4

Exam BoardEdexcel
ModuleF1 (Further Pure Mathematics 1)
Year2016
SessionJanuary
TopicLinear transformations

4. $$\mathbf { A } = \left( \begin{array} { c c } - \frac { 1 } { \sqrt { 2 } } & \frac { 1 } { \sqrt { 2 } }
- \frac { 1 } { \sqrt { 2 } } & - \frac { 1 } { \sqrt { 2 } } \end{array} \right)$$
  1. Describe fully the single geometrical transformation represented by the matrix \(\mathbf { A }\).
  2. Hence find the smallest positive integer value of \(n\) for which $$\mathbf { A } ^ { n } = \mathbf { I }$$ where \(\mathbf { I }\) is the \(2 \times 2\) identity matrix. The transformation represented by the matrix \(\mathbf { A }\) followed by the transformation represented by the matrix \(\mathbf { B }\) is equivalent to the transformation represented by the matrix \(\mathbf { C }\). Given that \(\mathbf { C } = \left( \begin{array} { r r } 2 & 4
    - 3 & - 5 \end{array} \right)\),
  3. find the matrix \(\mathbf { B }\).