Edexcel C4 2018 June — Question 4

Exam BoardEdexcel
ModuleC4 (Core Mathematics 4)
Year2018
SessionJune
TopicNon-constant acceleration

4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0c4a3759-ecaa-47c3-a071-ce25fd11159f-12_978_1264_121_411} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} A water container is made in the shape of a hollow inverted right circular cone with semi-vertical angle of \(30 ^ { \circ }\), as shown in Figure 1. The height of the container is 50 cm . When the depth of the water in the container is \(h \mathrm {~cm}\), the surface of the water has radius \(r \mathrm {~cm}\) and the volume of water is \(V \mathrm {~cm} ^ { 3 }\).
  1. Show that \(V = \frac { 1 } { 9 } \pi h ^ { 3 }\)
    [0pt] [You may assume the formula \(V = \frac { 1 } { 3 } \pi r ^ { 2 } h\) for the volume of a cone.] Given that the volume of water in the container increases at a constant rate of \(200 \mathrm {~cm} ^ { 3 } \mathrm {~s} ^ { - 1 }\),
  2. find the rate of change of the depth of the water, in \(\mathrm { cm } \mathrm { s } ^ { - 1 }\), when \(h = 15\) Give your answer in its simplest form in terms of \(\pi\).