| Exam Board | Edexcel |
| Module | C4 (Core Mathematics 4) |
| Year | 2016 |
| Session | June |
| Topic | Integration by Substitution |
6. (i) Given that \(y > 0\), find
$$\int \frac { 3 y - 4 } { y ( 3 y + 2 ) } d y$$
(ii) (a) Use the substitution \(x = 4 \sin ^ { 2 } \theta\) to show that
$$\int _ { 0 } ^ { 3 } \sqrt { \left( \frac { x } { 4 - x } \right) } \mathrm { d } x = \lambda \int _ { 0 } ^ { \frac { \pi } { 3 } } \sin ^ { 2 } \theta \mathrm {~d} \theta$$
where \(\lambda\) is a constant to be determined.
(b) Hence use integration to find
$$\int _ { 0 } ^ { 3 } \sqrt { \left( \frac { x } { 4 - x } \right) } d x$$
giving your answer in the form \(a \pi + b\), where \(a\) and \(b\) are exact constants.