Edexcel C4 2013 June — Question 5

Exam BoardEdexcel
ModuleC4 (Core Mathematics 4)
Year2013
SessionJune
TopicIntegration by Substitution

  1. (a) Use the substitution \(x = u ^ { 2 } , u > 0\), to show that
$$\int \frac { 1 } { x ( 2 \sqrt { x } - 1 ) } \mathrm { d } x = \int \frac { 2 } { u ( 2 u - 1 ) } \mathrm { d } u$$ (b) Hence show that $$\int _ { 1 } ^ { 9 } \frac { 1 } { x ( 2 \sqrt { x } - 1 ) } \mathrm { d } x = 2 \ln \left( \frac { a } { b } \right)$$ where \(a\) and \(b\) are integers to be determined.