Edexcel C4 2013 June — Question 3

Exam BoardEdexcel
ModuleC4 (Core Mathematics 4)
Year2013
SessionJune
TopicArea Under & Between Curves

3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{5c9f77f0-9f7c-4125-9da7-20fb8d79b05e-04_814_882_258_539} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the finite region \(R\) bounded by the \(x\)-axis, the \(y\)-axis, the line \(x = \frac { \pi } { 2 }\) and the curve with equation $$y = \sec \left( \frac { 1 } { 2 } x \right) , \quad 0 \leqslant x \leqslant \frac { \pi } { 2 }$$ The table shows corresponding values of \(x\) and \(y\) for \(y = \sec \left( \frac { 1 } { 2 } x \right)\).
\(x\)0\(\frac { \pi } { 6 }\)\(\frac { \pi } { 3 }\)\(\frac { \pi } { 2 }\)
\(y\)11.0352761.414214
  1. Complete the table above giving the missing value of \(y\) to 6 decimal places.
  2. Using the trapezium rule, with all of the values of \(y\) from the completed table, find an approximation for the area of \(R\), giving your answer to 4 decimal places. Region \(R\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
  3. Use calculus to find the exact volume of the solid formed.