Edexcel C4 2013 June — Question 2

Exam BoardEdexcel
ModuleC4 (Core Mathematics 4)
Year2013
SessionJune
TopicArea Under & Between Curves

2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{b0d21f0f-f5f6-4ca5-8e3e-98aee0d9db7a-03_735_1171_360_490} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of part of the curve with equation \(y = x \mathrm { e } ^ { - \frac { 1 } { 2 } x } , x \geqslant 0\).
The finite region \(R\), shown shaded in Figure 1, is bounded by the curve, the \(x\)-axis, and the line \(x = 4\). The table shows corresponding values of \(x\) and \(y\) for \(y = x e ^ { - \frac { 1 } { 2 } x }\).
\(x\)01234
\(y\)0\(\mathrm { e } ^ { - \frac { 1 } { 2 } }\)\(3 \mathrm { e } ^ { - \frac { 3 } { 2 } }\)\(4 \mathrm { e } ^ { - 2 }\)
  1. Complete the table with the value of \(y\) corresponding to \(x = 2\)
  2. Use the trapezium rule, with all the values of \(y\) in the completed table, to obtain an estimate for the area of \(R\), giving your answer to 2 decimal places.
    1. Find \(\int x \mathrm { e } ^ { - \frac { 1 } { 2 } x } \mathrm {~d} x\).
    2. Hence find the exact area of \(R\), giving your answer in the form \(a + b \mathrm { e } ^ { - 2 }\), where \(a\) and \(b\) are integers.